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Società Italiana di Fisica
Springer-Verlag 2000

Quasienergy states of trapped ions
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Abstract. The quantum models for a single trapped ion are extended to the description of the collective
dynamics for systems of ions confined in quadrupole electromagnetic traps with cylindrical symmetry. A
class of quantum Hamiltonians with suitable axial and radial interaction potentials given by homogeneous
functions of degree (−2) and invariant under translations and axial rotations are introduced. The con-
sidered axial and radial quantum Hamiltonians for the center-of-mass and relative motions are described
by collective dynamical systems associated to the symplectic group Sp(2,R). Discrete quasienergy spectra
are obtained and the corresponding quasienergy states are explicitly realized as Sp(2,R) coherent states
parameterized by the stable solutions of the corresponding classical motion equations. Consequently, a
correspondence between quantum and classical stability domains is established.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 03.65.Ge Solutions of wave equations: bound states

1 Introduction

It is known that ion traps [1,2] provide a single ion or a few
charged particles almost at rest and practically completely
isolated from the environment, permitting the study of the
structure of the atomic particles, their mutual interactions
and their interaction with light. In a Paul trap, regular
and stable patterns with macroscopic metallic conglomer-
ates [3] and also stable ordered structures similar to the
usual atomic crystals were obtained [4–7]. The theoretical
and experimental studies show that the classical trajecto-
ries of the stored ions can be regular in the quasiperiodic
regime and that at very low temperatures the ions can
form almost static crystalline structures. At sub-kelvin
temperatures, quantum effects appear and their descrip-
tion requires a quantum mechanical study of stored ion
dynamics. The electromagnetic ion trap has proven to be
a very powerful tool for the study of fundamental quan-
tum phenomena and the observation of Wigner crystals
[8–11].

The study of the quantum dynamics of a single ion
stored in a Paul trap has already been performed [12–20].
The solutions of the time-dependent Schrödinger equation
for a Hamiltonian given by a second-order polynomial op-
erator in coordinates and momenta have been obtained
in [21–24]. These solutions can be applied to an ion sys-
tem with harmonic interaction. Moreover, a quantum one-
dimensional approach for the dynamics of a system of two
or three ions inside a Paul trap was developed [25] and
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a complete analytic solution was obtained assuming an
ion centrifugal interaction. The collective center of mass
dynamics in a Paul trap have been studied in [26].

In this paper, we start an N -body quantum approach
of the ion dynamics inside a Paul or combined trap
considering an interaction potential given by a homo-
geneous function of degree (−2), invariant under trans-
lations and axial rotations. In the particular case of
axial motion of N pairwise interacting particles, this po-
tential is the Calogero potential for the one-dimensional
N -body exactly solvable problem with quadratic and in-
versely quadratic pair potentials [27,28]. We show that
the collective center of mass quantum motion [26] of
the system of N stored ions is similar to the quantum
one-particle dynamics in a Paul trap. Correspondingly,
the quasienergy spectrum and eigenfunctions can be ex-
plicitly given according to [20]. Moreover, the axial and
radial intrinsic motions can be described by the linear sys-
tem for the dynamical symplectic group Sp(2,R). Then,
using group representation theory, we obtain explicit an-
alytic solutions for the time-dependent Schrödinger equa-
tion describing the collective quantum dynamics in a Paul
or combined trap.

The paper is organized as follows. In Section 2, we in-
troduce a quantum Hamiltonian approach for systems of
N ions confined in quadrupole electromagnetic traps with
cylindrical symmetry. In Section 3, we show that both the
axial and radial center of mass motions can be described
by the quasienergy states for appropriate linear dynamical
systems associated with the symplectic group Sp(2,R).
We explicitly show that the center of mass collective
motion is similar to the quantum one-particle dynamics.
In Section 4, we consider a suitable class of interaction
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potentials and show that both the axial and radial
intrinsic motions can be also described by linear collective
models associated with the dynamical group Sp(2,R). We
obtain discrete quasienergy spectra and explicit
quasienergy states realized by the Sp(2,R) coherent
states parameterized by the stable solutions of the cor-
responding classical motion Hill equations. In Section 5,
some concluding remarks are presented. In the Appendix,
we consider the class of the Sp(2,R) time-dependent
linear dynamical systems and obtain the quasienergy
states in terms of coherent states based on the extremal
and non-extremal weight vectors. These symplectic
coherent states are parameterized by the stable solutions
of a Riccatti equation obtained by dequantization on the
Poincaré half plane considered as Sp(2,R) phase space.
The preceding results are applied to Sections 2 and 3.

2 Quantum Hamiltonians for N stored ions

In this section, we briefly discuss the Hamiltonian ap-
proach of quantum dynamics for a system of ions confined
in a quadrupole electromagnetic trap with cylindrical sym-
metry. We consider the following quantum Hamiltonian
for a system of N identical ions of mass M and electric
charge Q stored in a Paul or combined trap:

H =
N∑
α=1

Hα + V, (1)

where V is the interaction potential between ions and

Hα =
1

2M

(
pα −

1
2
QB× rα

)2

+QΦ(rα, t). (2)

Here rα= (xα1, xα2, xα3) and pα= (pα1, pα2, pα3) are the
coordinate and momentum vector operators of the particle
α , 1 ≤ α ≤ N , with pαj = −i~∂/∂xαj , 1 ≤ j ≤ 3. The
constant axial magnetic field is given by B = (0, 0, B).
The quadrupole electric potential is written as

Φ(rα, t) = A(t)(x2
α1 + x2

α2 − 2x2
α3), (3)

where the function A is either time-periodic in the Paul
trap case [1] or stationary in the Penning trap case [2]. For
an ideal Paul trap, this function has the period T = 2π/Ω
and is given by

A(t) = (r2
0 + 2z2

0)−1(U0 + V0 cosΩt), (4)

where U0 and V0 are the static and the time-varying volt-
ages applied to the trap of semi-axes r0 and z0.

The Hamiltonian H can be rewritten in the form

H =
N∑
α=1

− ~2

2M

3∑
j=1

∂2

∂x2
αj

+
1
2
Mλr(x2

α1 + x2
α2)

+
1
2
Mλax

2
α3 −

1
2
ωcLα3

]
+ V, (5)

where

ωc =
Q

M
B, λa = −4

Q

M
A(t) , λr =

1
4

(ω2
c − 2λa), (6)

and the axial angular momentum operator for the particle
α is given by

Lα3 = xα1pα2 − xα2pα1. (7)

We now introduce the following translation-invariant co-
ordinates yαj and translation-invariant differential opera-
tors Dαj :

yαj = xαj − xj , xj =
1
N

N∑
α=1

xαj , (8)

Dαj =
∂

∂xαj
−Dj , Dj =

1
N

N∑
α=1

∂

∂xαj
, (9)

where α = 1, ..., N and j = 1, 2, 3. From equations (8, 9)
we find
N∑
α=1

yαj = 0,
N∑
α=1

Dαj = 0, Dβk(yαj) = δkj

(
δαβ −

1
N

)
.

(10)

From equations (7–9) we also get

N∑
α=1

x2
αj = Nx2

j +
N∑
α=1

y2
αj ,

N∑
α=1

∂2

∂x2
αj

= ND2
j +

N∑
α=1

D2
αj ,

(11)
N∑
α=1

Lα3 = NL3 + L′3, L3 = x1p2 − x2p1,

L′3 = −i~
N∑
α=1

(yα1Dα2 − yα2Dα1), (12)

where pj = −i~Dj, NL3 is the center of mass angular
momentum and L′3 is the intrinsic angular momentum of
the N -particle system. Now, using equations (7–12) we
can rewrite (5) as

H = Hcm +H ′, (13)

where the center-of-mass Hamiltonian is given by

Hcm = N

[
1

2M
(p2

1 + p2
2 + p2

3) +
1
2
Mλr(x2

1 + x2
2)

+
1
2
Mλax

2
3 −

1
2
ωcL3

]
, (14)

and the intrinsic Hamiltonian is defined by

H ′ =
N∑
α=1

[
− ~2

2M

3∑
j=1

D2
αj +

1
2
Mλr(y2

α1 + y2
α2)

+
1
2
Mλay

2
α3

]
− 1

2
ωcL

′
3 + V. (15)
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The quasienergy operator i~∂/∂t − H associated with
the time-periodic Hamiltonian H with period T
[17,28,29] is characterized by a regular long-time behav-
ior. A quasienergy eigenstate Ψ of definite quasienergy E
is localized in space and satisfies the relation

Ψ(t+ T ) = exp
(
− i
~
ET

)
Ψ(t). (16)

For a suitable class of interaction potentials, the Hamilto-
nian H has a discrete quasienergy spectrum in the stabil-
ity regions of the Hill equation. In the following sections
we apply this quantum stability approach to the center of
mass and intrinsic collective Hamiltonians.

3 Center of mass quantum dynamics

In this section, we study the dynamic group structure and
quasienergy spectrum of the center of mass Hamiltonian
for a system of N stored ions. We consider the following
center of mass operators:

Ka0 =
1
4

(x2
3 −D2

3),

Ka± = −1
4

(x2
3 +D2

3 ∓ 2x3D3)± 1
2
, (17)

Kr0 =
1
4

(x2
1 + x2

2 −D2
1 −D2

2),

Kr± = −1
4

(x2
1 + x2

2 ∓ 2x1D1 ∓ 2x2D2)± 1. (18)

Using equations (17, 18), the center of mass Hamilto-
nian (14) becomes

Hcm = N(Ha +Hr −
1
2
ωcL3), (19)

Ha = αaKa0 + βaKa1, Hr = αrKr0 + βrKr1, (20)

where

Ka1 =
1
2

(Ka+ +Ka−), Kr1 =
1
2

(Kr+ +Kr−), (21)

αa = ~2M−1 +Mλa, βa = ~2M−1 −Mλa, (22)

αr = ~2M−1 +Mλr, βr = ~2M−1 −Mλr. (23)

The center of mass dynamical group Gcm is the direct
product Gcm = Ga⊗ Gr⊗SO(2), where the axial symplec-
tic group Ga has the infinitesimal generators Ka0, Ka1,
Ka2 = i[Ka0, Ka1], the radial symplectic group Gr has
the infinitesimal generators Kr0, Kr1, Kr2 = i[Kr0, Kr1],
and the infinitesimal generator of the axial rotation group
SO(2) is L3. The groups Ga and Gr are isomorphic to the
symplectic group Sp(2,R). A unitary irreducible represen-
tation of G is labeled by the Bargmann index ka for Ga,
where either ka = 1/4, or ka = 3/4, and by the Bargmann
index kr = (l+1)/2 for Gr, where l is a non-negative inte-
ger. Then the axial and radial Hamiltonians (20) describe
two time-dependent linear dynamical systems for Sp(2,R)

of the form (A.1) with a = αa, b = βa, c = 0 and a = αr,
b = βr, c = 0, respectively.

Using (A.15), the quasienergy eigenvectors of the
quasienergy operator i~∂/∂t − Hcm with definite
quasienergies E

ka ma,kr mr,l
are obtained in the form

Ψkama,kr mr,l = exp [−i(ka +ma)ϕa − i(kr +mr)ϕr]
× Ua(za)Ur(zr)Φka ma,kr mr,l, (24)

where the vectors Φka ma,kr mr,l with ma and mr non-
negative integers are satisfying the equations

KaΦka ma,kr mr,l = (ka +ma)Φka ma,kr mr,l,

KrΦka ma,kr mr,l = (kr +mr)Φka ma,kr mr,l,

Ka−Φka0,kr mr,l = Kr−Φka ma,kr 0,l = 0,
L3Φka ma,kr mr,l = ~lΦka ma,kr mr,l. (25)

According to (A.6), the operators Ua(za) and Ur(zr) are
given by

Ua(za) = exp (zaKa+) exp (ηaKa0) exp (−z̄aKa−), (26)
Ur(zr) = exp (zrKr+) exp(ηrKr0) exp (−z̄rKr−), (27)

where ηa = ln(1 − zaz̄a) and ηr = ln(1 − zrz̄r). Using the
differential equation (A.11) and denoting τ = N−1t, we
obtain

~
dϕa

dτ
= αa +

1
2
βa(za + z̄a),

~
dϕr

dτ
= αr +

1
2
βr(zr + z̄r). (28)

According to equations (A.16, A.14), the complex coordi-
nates za and zr can be written

za =
[
Mλaua + i~

dua

dτ

] [
Mλaua − i~

dua

dτ

]−1

, (29)

zr =
[
Mλaur + i~

dur

dτ

] [
Mλaur − i~

dur

dτ

]−1

, (30)

where ua and ur are stable solutions of the Hill equations

d2ua

dτ2
+ λaua = 0,

d2ur

dτ2
+ λrur = 0. (31)

The center of mass quasienergies corresponding to
Ψkama,kr mr,l can be written as

E
ka ma,kr mr,l

= 2µa(ka +ma) + 2µr(kr +mr)−
1
2
ωcl,

(32)

where µa and µr are the Floquet exponents of ua and
ur. Some explicit realizations of the quasienergy eigenvec-
tors in the case of single ion dynamics have been obtained
in [17,20]. These realizations, with time replaced by τ , can
be applied to the center of mass Hamiltonian.



200 The European Physical Journal D

4 Collective intrinsic dynamics

In this section, we consider a class of axial and ra-
dial interaction potentials given by translation-invariant
homogeneous functions of degree (−2), invariant under the
intrinsic axial rotations, and show that the axial and radial
intrinsic dynamics can be described by linear collective
models associated with the dynamical group Sp(2,R).
We obtain discrete quasienergy spectra and explicit
quasienergy states realized by the Sp(2,R) coherent states
parameterized by the stable solutions of the corresponding
Hill classical motion equations.

We introduce the following operators:

K ′a0 =
1
4

N∑
α=1

(y2
α3 −D2

α3) +Wa,

K ′a± = −1
4

N∑
α=1

(y2
α3 +D2

α3 ∓ 2yα3Dα3)± 1
2

(N − 1) +Wa,

(33)

K ′r0 =
1
4

N∑
α=1

2∑
j=1

(y2
αj −D2

αj) +Wr,

K ′r± =−1
4

N∑
α=1

2∑
j=1

(y2
αj+D2

αj ∓ 2yαjDαj)± (N−1)+Wr,

(34)

where the axial potential Wa is a function of yα3 (1 ≤ α ≤
N), and the radial potential Wr is a function of yα1 and
yα2 (1 ≤ α ≤ N) such that [L′3,Wr] = 0. Moreover, we
suppose that Wa and Wr are homogeneous functions of
degree (−2). Then the Euler theorem gives

N∑
α=1

yα3Dα3(Wa) = −2Wa,

N∑
α=1

2∑
j=1

yαjDαj(Wr) = −2Wr. (35)

A particular axial potential is considered for the one-
dimensional N -body exactly solvable Calogero dynamical
system with quadratic and inversely quadratic pair poten-
tials [27,28]:

Wa = g2
∑

1<α<β<N

1
(yαj − yβj)2

· (36)

According to (35), the operators (33, 34) satisfy the com-
mutation relations for the Lie algebra of the symplectic
group Sp(2,R):

[K ′a−,K
′
a+] = 2K ′a0, [K ′a0,K

′
a±] = ±K ′a±, (37)

[K ′r−,K
′
r+] = 2K ′r0, [K ′r0,K

′
r±] = ±K ′r±. (38)

We remark that the axial operators (33) commute with
the radial operators (34). Moreover, the angular momen-
tum L′3 commutes with either operator from (33, 34). We

introduce the axial symplectic groupG′a with the infinites-
imal generators K ′a0, K ′a1, K ′a2 and the radial symplectic
group G′r with the infinitesimal generators K ′r0, K ′r1, K ′r2,
where

K ′a1 =
1
2

(K ′a+ +K ′a−), K ′a2 =
i
2

(K ′a− −K ′a+), (39)

K ′r1 =
1
2

(K ′r+ +K ′r−), K ′r2 =
i
2

(K ′r− −K ′r+). (40)

The intrinsic groupsG′a and G′r are isomorphic to the sym-
plectic group Sp(2,R). The intrinsic dynamical group is
the direct product G′ = G′a⊗G′r⊗R′, where the infinitesi-
mal generator of the intrinsic axial rotation groupR′ is L′3.

Using equations (15, 33, 34), the intrinsic Hamiltonian
can be written as

H ′ = H ′0 + V ′, H ′0 = H ′a +H ′r −
1
2
ωcL

′
3, (41)

V ′ = V − 2~2M−1(Wa +Wr), (42)

H ′a = αaK
′
a0 + βaK

′
a1, H

′
r = αrK

′
r0 + βrK

′
r1, (43)

where αa, βa, αr and βr are given by (22, 23). Then the
axial and radial intrinsic Hamiltonians (43) describe two
linear dynamical systems for Sp(2,R) of the form (A.1)
with a = αa, b = βa, c = 0 and a = αr, b = βr, c = 0,
respectively. If V ′ = 0, then the intrinsic dynamics can be
described by the linear Hamiltonian H ′0 for the intrinsic
dynamical group G′. A unitary irreducible representation
of G′ is labeled by three non-negative integers na, nr and
l. The Bargmann index ka of G′a and the Bargmann index
kr of G′r are given by

ka =
1
4

(N − 1) +
1
2
na, kr =

1
2

(N − 1) +
1
2
nr. (44)

Using (A.15), the quasienergy eigenvectors of the
quasienergy operator i~∂/∂t−H ′0 are obtained in the form

Ψkama,kr mr,l,s = exp [−i(ka +ma)ϕa − i(kr +mr)ϕr]

× U ′a(za)U ′r(zr)Φka ma,kr mr,l,s, (45)

where the basis vectors Φka ma,kr mr,l,s are satisfying the
equations

K ′a0Φka ma,kr mr,l,s = (ka +ma)Φka ma,kr mr,l,s,

K ′r0Φka ma,kr mr,l,s = (kr +mr)Φka ma,kr mr,l,s,

K ′a−Φka 0,kr mr,l,s = K ′r−Φka ma,kr 0r,l,s = 0,

L′3Φka ma,kr mr,l,s = ~lΦkama,kr mr,l,s, (46)

for ma, mr = 0, 1, ... Here s is a degeneracy index. In
the particular case of the Calogero potential, the explicit
expressions for the degeneracy generating functions are
presented in [28].

The unitary operators U ′a(za) and U ′r(zr) are defined
by (A.6):

U ′a(za) = exp(zaK
′
a+) exp(ηaK

′
a0) exp(−z̄aK

′
a−), (47)

U ′r(zr) = exp(zrK
′
r+) exp(ηrKr0) exp(−z̄rK

′
r−), (48)
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where ηa = ln(1− zaz̄a) and ηr = ln(1− zrz̄r).
The complex coordinates za and zr, phases ϕa and ϕr

and the quasienergy spectrum are given by (28–32) with
τ replaced by t

~
dϕa

dt
= αa +

1
2
βa(za + z̄a),

~
dϕr

dt
= αr +

1
2
βr(zr + z̄r). (49)

According to (A.16, A.14), the complex coordinates za and
zr can be written

za =
[
Mλaua + i~

dua

dt

][
Mλaua − i~

dua

dt

]−1

, (50)

zr =
[
Mλaur + i~

dur

dt

][
Mλaur − i~

dur

dt

]−1

, (51)

d2ua

dt2
+ λaua = 0,

d2ur

dt2
+ λrur = 0, (52)

E
ka ma,kr mr,l,s

= 2µa(ka +ma) + 2µr(kr +mr)−
1
2
ωcl,

(53)

where µa and µr are the Floquet exponents of the stable
solutions ua and ur of the Hill equations (52). The intrinsic
quasienergies corresponding to quasienergy eigenvectors
Ψka ma,kr mr,l, s are given by (53).

5 Concluding remarks

In this paper we have developed a collective quantum
model for ion systems confined in quadrupole electro-
magnetic traps with cylindrical symmetry. This model
describes the collective motion of stored ions observed
in [26]. We have considered suitable axial and radial in-
teraction potentials given by translation-invariant homo-
geneous functions of degree (−2), invariant under axial
rotations. We have shown that both axial and radial dy-
namics of the center of mass and of the intrinsic motion of
a system of N stored ions can be described by the linear
collective models of the dynamical group Sp(2,R). Then
the properties of the dynamical group and of the associ-
ated coherent states are used in order to obtain analytic
exact solutions of the time-dependent Schrödinger equa-
tion, characterizing the collective quantum dynamics of
ions stored in a Paul or a combined trap. These solutions
describe the crystalline states appearing on the symmetry
axis and in the symmetry plane.

We have obtained discrete quasienergy spectra and ex-
plicit quasienergy eigenstates realized by coherent states
for the dynamical symplectic group Sp(2,R). These sym-
plectic coherent states are parameterized by the stable
solutions of a classical motion Hill equation, obtained by
dequantization on the Poincaré half plane classically con-
sidered phase space. This result follows from the Berezin
quantization [28] and the time-dependent variational prin-
ciple [30]. The system of quasienergy states describes a

quantum crystallization regime. No phase transition was
obtained, because the collective models are integrable and
have discrete quasienergy spectra. Introducing specific
Coulomb interactions and trap anharmonicities that give a
coupling between the radial and axial degrees of freedom,
continuous and nonlinear discrete quasienergy spectra can
be obtained for some control parameters corresponding to
the classical chaotic regimes. Then suitable effective in-
teractions realized as biparticle potentials multiplied by
functions of collective coordinates can be introduced. We
will concern ourselves with these aspects in the next pa-
per [31].

V.N.G. gratefully acknowledges the Fellowship from the
Alexander von Humboldt Foundation.

Appendix

In this appendix we study the time-dependent linear dy-
namical systems associated with the dynamical symplectic
group Sp(2,R) and obtain the quasienergy eigenstates in
terms of coherent states parameterized by the stable so-
lutions of the classical motion equations obtained by de-
quantization on the Poincaré half plane. We consider a
quantum linear Sp(2,R) system described by the Hamil-
tonian

H = aK0 + bK1 + cK2, (A.1)

where a, b and c are time-dependent functions. The basis
of the Lie algebra of Sp(2,R) consists of three generators
K0, K1 and K2, such that the raising and lowering oper-
ators K± = K1 ± iK2 satisfy the following commutation
relations:

[K0,K±] = ±K±, [K−,K+] = 2K0. (A.2)

The Casimir operator

C2 = K2
0 −K2

1 −K2
2 , (A.3)

has eigenvalues denoted by k(k − 1), where k is the
Bargmann index for unitary irreducible representations
of Sp(2,R) [28]. We consider only the positive discrete
series of Sp(2,R) representations. For the lowest weight
unitary irreducible Sp(2,R) representation space with a
fixed Bargmann index k > 0, we consider the canoni-
cal basis consisting of the orthonormal vectors Φkm for
m = 0, 1, ..., where K0 is diagonal and the action of K+

and K− is given by

K+Φkm = [(m+ 1)(m+ 2k)]
1
2Φk,m+1 ,

K−Φkm = [m(m+ 2k − 1)]
1
2Φk,m−1,

K0Φkm = (k +m)Φkm. (A.4)

We now introduce the following coherent states for
Sp(2,R):

Φkm(z) = U(z)Φkm(0), (A.5)
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where Φkm(0) = Φkm and

U(z) = exp (zK+) exp (βK0) exp (−z̄K−) (A.6)

are group representation unitary operators with |z| < 1
and β = ln(1− zz̄) [20]. For the case m = 0, the standard
geometrical construction of extremal generalized coherent
states is obtained [28]. The control parameter space is the
unit disc |z| < 1 endowed with the Lobachevsky metrics
ds2 = 4(1− zz̄)−2dzdz̄ [28]. According to (A.5), the non-
extremal coherent states are constructed by the applica-
tion of the unitary operators (A.6) on the non-extremal
weight vectors Φkm, m = 1, 2, ...

The vector

Ψkm = exp (−iϕkm)Φkm(z), (A.7)

evolves according to the Schrödinger equation

i~
d
dt
Ψkm = HΨkm, (A.8)

where the complex coordinate z and the phase ϕkm are
time-dependent functions satisfying the differential equa-
tions

~
dϕkm

dt
(1− zz̄)Φkm =

{[
i~
(
z

dz̄
dt
− dz

dt
z̄

)
+a(1 + zz̄) + b(z + z̄) + ic(z − z̄)

]
K0

+
[
i~

dz̄
dt

+ az̄ +
b

2
(1 + z̄2)− ic

2
(z̄2 − 1)

]
K−

−
[
i~

dz
dt
− az − b

2
(z2 + 1)− ic

2
(z2 − 1)

]
K+

}
Φkm.

(A.9)

Then (A.9) holds if ϕkm = (k + m)ϕ and the time-
dependent functions z and ϕ are given by the differential
equations

i~
dz
dt

= az +
b

2
(z2 + 1) +

ic
2

(z2 − 1) (A.10)

~
dϕ
dt

= a+
b

2
(z + z̄) +

ic
2

(z − z̄). (A.11)

The unit disc |z| < 1 can be mapped onto the Poincaré
half plane Im w > 0 by the Cayley transformation z =
(i − w)(i + w)−1. Then the motion equation (A.10) for z
reduces to the following Riccatti equation:

~
dw
dt

= w2(b− a) + 2cw− a− b. (A.12)

If a 6= b, then (A.12) can be linearized by substituting

w =
2~
b− a

1
u

du
dt
, (A.13)

where u satisfies the linear differential equation

d2u

dt2
+ 2c

du
dt

+ fu = 0, f = (2~)−2(b2 − a2). (A.14)

Then the quasienergy solutions of the Schrödinger equa-
tion (A.8) can be written as

Ψkm = exp(zK+) exp(βK0) exp(−z̄K−) exp(−ϕK0)Φkm,
(A.15)

where ϕ is obtained from (A.11) and

z =
[
i(b− a)u− 2~

du
dt

] [
i(b− a)u+ 2~

du
dt

]−1

(A.16)

with u given by (A.14).
If c = 0 and f is a time-periodic function, then (A.14)

is a Hill equation. The equation (A.14) for the Paul po-
tential (4) is the standard Mathieu equation. Moreover,
the quasienergy spectrum is given by

Ekm = 2~µ(k +m), m = 0, 1, ..., (A.17)

where µ is the Floquet exponent for the solution u
of (A.14).

It is convenient to denote

Â = U (−z)AU (z) , Ã = (Ψk0, AΨk0) (A.18)

for any polynomial operator A in K0, K1 and K2. If A
is a quantum observable, then the corresponding classical
observable Ã is given by the expectation value of A in the
coherent states Ψk0. Then

Ã = (Φk0, ÂΦk0). (A.19)

For the generators K0, K+ and K−, we obtain

K̂− = (1− zz̄)−1 [
K− + 2zK0 + z2K+

]
= (K̂+)†,

(A.20)

K̂0 = (1− zz̄)−1 [z̄K− + (1 + zz̄)K0 + zK+] , (A.21)

K̃0 = k
1 + zz̄

1− zz̄ , K̃+ = k
2z̄

1− zz̄ , K̃− = k
2z

1− zz̄ · (A.22)

The classical Hamiltonian H̃ corresponding to the quan-
tum linear system (A.1) can be written as

H̃ = (1− zz̄)−1 [a(1 + zz̄) + b(z + z̄) + ic(z̄ − z)] .
(A.23)

Then (A.10) is exactly the classical motion equation

dz
dt

=
{
z, H̃

}
(A.24)

with the Poisson bracket

{f, g} =
(1− zz̄)2

2ik

(
∂f

∂z

∂g

∂z̄
− ∂f

∂z̄

∂g

∂z

)
(A.25)

obtained from the Berezin quantization [28] and the time-
dependent variational principle [30].
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